Combined Heat & Power at the University of Minnesota

October 23, 2013

with

University of Minnesota

Guiding Principals:

Energy Management's decisions are driven by:

- Reliability
- Sustainability
- Cost Effective

Master Planning:

Pathway to Combined Heat and Power Proposal

Utility
Master
Plan

Old Main
CHP

Turbine
Size

- Utility Master Plan identified need for new steam capacity due to obsolete 1940's boilers and significant campus growth
- Traditional boiler used for the baseline assumption

Reliability > N+1

Reliability > N+1

Master Planning:

Pathway to Combined Heat and Power Proposal

Utility
Master
Plan

Old Main
CHP

Turbine
Size

- 25MW Turbine recommended:
 - Creates more reliable electrical service to campus
 - Lowers Twin Cities Campus Carbon Footprint by 15%
 - Provides annual and life cycle cost savings

Match Your Loads:

NON-PEAK ELECTRICAL SEASON (FALL/WINTER/SPRING)

Match Your Loads:

Sustainable: Climate Action Plan

Climate Action Plan Evaluation Criteria

- Annual reduction in greenhouse gas emissions
- Cost of implementation
- Operating cost or savings
- Net present value cost or savings
- Useful life
- Synergy with U mission and priorities
- Visibility
- Cost/Savings Per Unit of Emissions Reduced

Sustainable: Climate Action Plan

Strategy	Annual CO2 Reduction (metric tons)	Cost Per Metric Ton Reduced
Reduce campus 1 M GSF	22,000	(\$75.11)
Build CHP	68,300	(\$25.78) *
Reduce lab air exchanges	43,106	(\$21.28)
Recommission Buildings	59,001	(\$20.88)
Buy wind credits	2,988	\$ 2.41

Cost – Marginal Investment Pays

	Traditional Boiler	One - 25 MW Turbine
First Cost	\$ 58M	\$ 96M
Annual Cost/ (Savings) vs. FY14	\$ 3M Cost	\$ (2M Savings)
Annual Savings vs. Boiler Only	\$ O	\$ (5M Savings) 8 year return on the marginal investment
30 yr Lifecycle (Savings)	\$ O	\$176M

Considerations:

- Thermal balance is absolutely required for acceptable economics.
- Right size for the project
- Delivery of power and heat needs careful consideration
- Permits Pay attention!
- Contracts
- Training

An In Conclusion...

